Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Kidney360 ; 2(1): 33-41, 2021 01 28.
Article in English | MEDLINE | ID: covidwho-1776884

ABSTRACT

Background: AKI is a significant complication of coronavirus disease 2019 (COVID-19), with no effective therapy. Niacinamide, a vitamin B3 analogue, has some evidence of efficacy in non-COVID-19-related AKI. The objective of this study is to evaluate the association between niacinamide therapy and outcomes in patients with COVID-19-related AKI. Methods: We implemented a quasi-experimental design with nonrandom, prospective allocation of niacinamide in 201 hospitalized adult patients, excluding those with baseline eGFR <15 ml/min per 1.73 m2 on or off dialysis, with COVID-19-related AKI by Kidney Disease Improving Global Outcomes (KDIGO) criteria, in two hospitals with identical COVID-19 care algorithms, one of which additionally implemented treatment with niacinamide for COVID-19-related AKI. Patients on the niacinamide protocol (B3 patients) were compared against patients at the same institution before protocol commencement and contemporaneous patients at the non-niacinamide hospital (collectively, non-B3 patients). The primary outcome was a composite of death or RRT. Results: A total of 38 out of 90 B3 patients and 62 out of 111 non-B3 patients died or received RRT. Using multivariable Cox proportional hazard modeling, niacinamide was associated with a lower risk of RRT or death (HR, 0.64; 95% CI, 0.40 to 1.00; P=0.05), an association driven by patients with KDIGO stage-2/3 AKI (HR, 0.29; 95% CI, 0.13 to 0.65; P=0.03; P interaction with KDIGO stage=0.03). Total mortality also followed this pattern (HR, 0.17; 95% CI, 0.05 to 0.52; in patients with KDIGO stage-2/3 AKI, P=0.002). Serum creatinine after AKI increased by 0.20 (SEM, 0.08) mg/dl per day among non-B3 patients with KDIGO stage-2/3 AKI, but was stable among comparable B3 patients (+0.01 [SEM, 0.06] mg/dl per day; P interaction=0.03). Conclusions: Niacinamide was associated with lower risk of RRT/death and improved creatinine trajectory among patients with severe COVID-19-related AKI. Larger randomized studies are necessary to establish a causal relationship.


Subject(s)
Acute Kidney Injury , COVID-19 , Acute Kidney Injury/drug therapy , Adult , COVID-19/complications , Humans , Niacinamide/therapeutic use , Prospective Studies , Renal Dialysis/adverse effects , Retrospective Studies , Risk Factors
2.
Kidney Int Rep ; 6(12): 3002-3013, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1549765

ABSTRACT

INTRODUCTION: Acute kidney injury (AKI) is common in COVID-19 and associated with increased morbidity and mortality. We investigated alterations in the urine metabolome to test the hypothesis that impaired nicotinamide adenine dinucleotide (NAD+) biosynthesis and other deficiencies in energy metabolism in the kidney, previously characterized in ischemic, toxic, and inflammatory etiologies of AKI, will be present in COVID-19-associated AKI. METHODS: This is a case-control study among the following 2 independent populations of adults hospitalized with COVID-19: a critically ill population in Boston, Massachusetts, and a general population in Birmingham, Alabama. The cases had AKI stages 2 or 3 by Kidney Disease Improving Global Outcomes (KDIGO) criteria; the controls had no AKI. Metabolites were measured by liquid chromatography-mass spectrometry. RESULTS: A total of 14 cases and 14 controls were included from Boston and 8 cases and 10 controls from Birmingham. Increased urinary quinolinate-to-tryptophan ratio (Q/T), found with impaired NAD+ biosynthesis, was present in the cases at each location and pooled across locations (median [interquartile range]: 1.34 [0.59-2.96] in cases, 0.31 [0.13-1.63] in controls, P = 0.0013). Altered energy metabolism and purine metabolism contributed to a distinct urinary metabolomic signature that differentiated patients with and without AKI (supervised random forest class error: 2 of 28 in Boston, 0 of 18 in Birmingham). CONCLUSION: Urinary metabolites spanning multiple biochemical pathways differentiate AKI versus non-AKI in patients hospitalized with COVID-19 and suggest a conserved impairment in NAD+ biosynthesis, which may present a novel therapeutic target to mitigate COVID-19-associated AKI.

SELECTION OF CITATIONS
SEARCH DETAIL